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A partly linearized solution of plastic deformation of a
rotating disk based on the deformation theory of plasticity and
considering finite strains is obtained. The stresses and the
strains of this problem for a given material and a given msximum
strain can be obtained merely by a simple multiplication using the
tables presented herein. This method is used to investigate the
general plastic behavior of a rotating disk. An appro-te method
is also given in which the stresses are calculated by using strains
obtained from the ideally plastic material end the tensile true
stress-strain curve of the material.

Numerical examples sre calculated by the two methods and
agree very well with the exact solution based on deformation the-
ory previously obtained. Calculations are also made for ideally
plastic material and for the power-function approSmation for pur-
poses of comparison.

The following conclusions, similar to those resulting from
the linearized solution af the thin plate with a circular hole, are
obtained for this wobl.em:

(1) The variation of a parameter, which is determined from the
octahedral.shear stress-strain curve of the material, can be used
as a general criterion of the applicabilityy of deformation theory.

(2) The ratios of strd.n along the radius to the maximum value
and the ratios of principal stresses sre essentially independent
of the octahedral shear stress-strain curve of the material, but
the distributions of the stresses, and therefore the rotating
speeds of the disk, depend very much on the material.

(3) The results obtdned from the ideally plastic material
G with the infinitesimal strain concept give good approximate values

of strains but not of stresses.
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(4) The rotating speed of the disk for
of the disk can be determined directly from
strain curve of the material.

NACA TN 2367

a given maximum strain
the tensile true stress-

(5) Good correlationbetween the experhentdly determined
bursting speed and the calculated value deterdned directly from
the tensile stress-strain curve of the material is obtained.

(6) If a simple analytical function representing the octa-
hedral sheer stress-strainrelation is required for analysis, the
power-law approxbwtion csnbe used.

INIRODIJCTIOl!?

In the design of a high-speed or a highly stressed machine
member such as a turbine or a compressor rotor, the distributions
of stresses smd strains in the strain-hardeningrange must be
lnlown. The problem of a rotating disk for an ideslly plastic
materiel was solved byFhdai (reference 1). A solution for gas-
turbine disks considering SW plastic strain in the strain-
herdening range is obtained in reference 2 by a trial-and-error
procedure snd by using elastic stress and strain distributions as
a first appro-tion. An experimental investigationfor the high-
speed rotating disk is made in reference 3; distributions of plas-
tic strains (logarithmicstrains) for different types of disk are
measured. The effect of strength and ductility on the burst char-
acteristics of rotating disks are experimentally investigated in
reference 4. An exact solution hsed on defonmtion theory for
plane plastic stress problems with axial.symetry (including a cir-
cular membrane under pressure, a rotating disk, and a thin plate
with a circuM.r hole) in the strain-hardeningrange %s obtained
in reference 5; numerical calculations sre made for Inconel X and
Timken alloy 16-25-6. A linearized solution of plastic deformati~n
of a thin plate with a circular hole is given in reference 6. This
linearized solution is not only simple and accurate but also offers ‘
a means of investigating the general plastic behavior of that prob-
lem for nmst materials.

Extension of this method to the problem h-g the additional
complication of body forces, such as a rotating disk, is therefore
interesting. (For a circular menibrsneunder pressure, the normal
pressure canbe treated in a manner similsr to the centritWgal
force of a rotating disk.) The partly linearized solution obtained
at the IWCA Lewis lslboratoryand presented herein is also used to
investigate general plastic behavior for this problem.
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SYMIWLS

The following symbols are used in this report:

3

A,B,C,
D,E,F

b

H,J,L

h

‘init

K

%

k

m

n

r

u

z

a

r

c

e

P

a

T

m

coefficients & nmlhear Utf erential equations; functions
of a, r> @ rk

original outer mdius of rotating disk

trigonometricfunctians of

instantaneous thickness of

initial thicbess of disk

strain-hardeningconstant

arbitrary loading constant

a.

disk

constsnt, in d&mension of length

parameter relating to

parsmeter relating to
tion theory

radial coordinate d

radial displacement

-al coorcklnate

parsmeter indicating

strain hardening

criterion of applicability of deforma-

undeformed disk

ratio of principal stresses

octahedral shear strain

logarithmic strain (natural strain), logarithm of instantaneous
length divided by initial length of element

a= coordinate

mass per unit volume

normal true stress, force per unit instantaneous

octahedral shear

*= velocity

stress

area

— ____ .—. — –—.. —-.. .
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Subscripts:

b at outer radius b

o at center of disk

r,ejz principal directions: radial, tangential, and tial directions
..=-

RAsIc EQuA!rcoNs

A disk having m original outer radius b and an initial thick-
ness ~t rotating about its axis with an angular velocity m

is shown in figure l(a). A small element defined by A@ and
A(r+u) taken at the radius (r+u) in the deformed state is given
in figure l(b). In the undeformed state, this element is located
at r and defined by A9 and Ar. The instantaneous thiclmess h
of the element and the stresses acting on the element are also
shown in the figure.

The relations of stresses and.strains based on the deformation
theory for plane plastic stress in the cylindrical coortiates are
(references 7 snd 8):

Cr +Ce+cz=o (1)

-f= T(T) (2)

1

T . @ (Cfr2- Ur Ue + Uez)z
3

(3a)
1

F
T=2; (C*2 +~rc e + Ce2)2 (3b)

H(.e+r)
%=3T

lycz. ––
3T [ 1-~(Ur+tJe)

(4a)

(4b)

(4C)

The constsnts 1/2 snd 1/3 in equations (4) are determined from the
condition defined by equation (1) and one of the equations (3).
Only five of these equations are therefore independent.

.
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The finite-strain concept (references8 to 10), which con-
siders the instantaneous dimensions of the elementj is used because
large deformation in the strain-hardeningrange is considered.
The stress is then equal to the force divided by the instantaneous
area and the strain to the logarithm of the instantaneous length
divided by the initial lengbh of the element (references8 to 10).
It is mentioned in reference 5 that as long as the
ory is applicable, the logarithmic strain can also
strsin-displacementrelations for this problem are

Er d(r+u)
= loge ~

cz=— ‘_oge%2

deformation the-
be used. The
then as follows:

(5a)

(a)

(5C)

From the condition of equilibrium in the radial direction of
the mall element in fi@re l(b), the folLowing equation of equi-
librium is obtained (reference 5):

(r+u) d(”r@ = (ae - Ur) h - P (&%dty&
d(r+u)

(6)

Nine equations defining this problem are equations (l), (2), (3b),
(4a), (4b), (5a), (5b)j ~5c), and (6), which involve nine
unknowns: ‘r> ‘e> cr>cej Czj r) T,h,and u. Equations (1) and
(5) can be used to eliminate cz, u, and h, resulting in a com-

patibility equation. The equations defining this problem sre then
reduced to six equations with six unknowns: ‘rJ ~eY ~r> ~e~ T>
and T. Two of the four UUICUOWIM,Or, ~ej Cr2 ~d ~ej maybe

e13minated by using equations (4a) and (4b) or (3b). The quan-
tity T is a lmown function,of y, which is experimentallydeter-
mined from a simple tensile test. The problem is then reduced to
one involving three unknowns. Obtaining the solution of the
resulting equations is not, however, a simple matter. This diffi-
culty cau be avoided by using the following transformation (refer-
ences 1 and 5 to 7) because the yielding surface of plane plastic
stress based on the deformation theory is an e~ipse:

.

. . . . . .— ...—-—.—— -————— -——- —— — ———————.—
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U+ar=e 3&~sina

Rewriting the princiyal stresses as functions of ~ and u gives

.r=$.(&s&a-cosa)

‘e=+fT(J@sba+cOsa)
}

(7)

where ?, which is a function of T, vsries with r and also with
load. With equations (7) substituted into equations (4a) and (43),
the principsl strains can %e expressed as functions of y and a
as fOllows:

Cr = ~~ (sin a -&cos a)

Ce = J- (sin a +@cos a)
2+ }

(8)

In these equations, the parameter a is closely related to the
ratio of principal stresses, inasmch as

and varies alnmst l.inesrlywith a for the range of a encountered
in the present problem, which is the same range as in the thin
plate with a circular hole as shown in figure 2 of reference 6.
By using the transformation, the equations for this problem ere
reduced to the following two nonJ3near differential equations,
which are to be solved with sm experimentally determined func-
tiOI.1T(y):

() da () m _~
D :~+E(a : r)‘ii

In
Cu’
&’

),

I

.

—.—— —.— .—. ——.
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or

() da CE-FB
; ‘= AE-DB

()‘i

1

()r w FA - CD
ii —= EA-BD

()‘ii J

(9)

where

A=(~cosa+sina)-(~ sins-cosa)TcOsa

@

( )
B=(&sina-cosa) $~-rs:a~

(f,cos~ -f, ,d,2:(:fe*sfia
C=2(cosa)e -—

(9a)

D=(&sina-cosu)T ,

E=- (* COS u + sti J

~ F=2w[J@j

f(y,a)
Using equations (9a) and expanding the terms of e into a
series result in

CE-?3F=- 2m-24m~g-&$$To) fl(a,T,+x, (>)~f f2(a,y]

-. -— ——. — —.
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where

fl(cL,r)=

$(l.a,,[’-lf(cosa)j

f
=+2 (COS U) T + ; (COS2 CL)Y2 . . .

+
sin a

f2(a,y) = e

H = cos a

J. = < 3sina-cosa

KI =4 p-P(@2

-,

K’
Ii
N

s
&

V3 To

L= T 3 cos a +sina

IJXEAKCWON OF EQUATIONS

In equations (9b), the variable T occurs not only in the

combination of
T d~
- — as in the case of a thh plate with a circu-
‘W

lsr hole (reference 6), but also in the loading term. As proposed
y dT

in reference 6, the term — —
T* can be replaced by m, which is

equal to the slope of a straight line approh%ing the T (y) curve
on the logarithmic plot within the range of T encountered along
the radius 02 the disk, Tb to y.. ~us m is a fUllCkiOII of y.j

in other words, the vslue of m for one material is different for
different loads. The special case where a straight line is used to
appro-te the whole strain-hardeningrange of the T(y) curve
of a given materikd on the logarithmic plot, so that m is con-
stant through the strain-hardeningrange, is the well-known power-
law appro-tion. As in the case of a thin plate with a circular

‘,

..—— .— _ .—.
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hole, the power-la~?-a–~roximation
results for this problem, as will

gives very good approximate
be shown in

lations, Results, and Discussion.” The term

replaced by m without appreciable error.
?

the section “Calcu-
y dT-—
T dy

can thus be

~ ()3 1 I in equations (%) canbeFurthermore, the term
Z3T0

replaced by a constant Cl, which is determined in a manner simi-

lar to that in the case of a thin plate with a circulsr hole (ref-

erence 6), as will-be described. The terms

in equations (9b) then become (m - Clyo).

The general info~tion concerning the
7(T) curve of the materisl on the solution
obtained only if the quantity T/T. in the

effect of the -.
of this .pr,~blemcan be
loading term can pos-

sibly be expressed ~-a function-o; (m - Clro) ●
For any pari of

the T(T) curve ‘thatdoes not deviate greatly from a straight
line in the strain-hardeningrange within the value of y con-
sidered, To to Tb, the fo~owing equation can be written with

sufficient accuracy:

()mwhere
% a~

is the average slope of T(r) from To tm yb

=d (To)To) is a known point on the T(y) curve. The quan-

()TO dT
tity

~ qav
does not equal (m - CITo) but h= a cefi~

relation to it. Results obtained in reference 5 show that the val-
ues of a and T/To axe not very sensitive to the T(T) curve

()

To dT
of the material. If only a linear relation between

~ &av

and (m - Clro) is retained, equation (10) becomes

T
—=
T ()

l-1- ~C2(m-C1yo) .
0 r

(lOa)

——— .— -- —
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An appro-te value of C, = 0.5, ~hich is equal.to the mean value
L.

of
f

1 ~ along the,radius, can be used in equation (lOa). The
Z;yo

values of To~ Yb/Yoy ~d m are known for any Petit (Yoj To).

13yusing the values of 7/To = Tb/To taken from the true octahed-

ral sheer stress-strain curves of several mat=ials emd using equa-
tion (lOa) end y/To = yb/yo, the constant C2 is then found to

be

C2=2

A zero value of C2 is used for the case of negative (m - Clro)Y

because there is no negative slope on the true stress-strain curve
of any material. Thus:

T
—=
T ()1 -21-L (m - CITo)
o To

(lOb)

It may be noted that this relation is very approxhnate and is only
used to determine the variations of a and y/Yo along the ra~us ~

which ere not sensitive to the T(y) curve of the material. For
the stress end rotating speed, which are dependent on the
T(~) curve, this approximatee relation cannot be used. The
stresses sre determined from the values of a and y/y. obtained
by the pertly linearized solution and the true octahedral shear
stress-strain curve of the msterial obtained from the tensile test.
The rotating speed is determined from the distributions of tangen-
tial stress and strain.

ing

by

the

Substituting equation (lob) into eqyations (9b) and the result-

equation into equations (9), replacing ~g.g$+,o)

(m - CITo), and neglecting the small terms (as in refe~ence 6),

following equations are obtained:

;,

— — . —
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Let

n=m - C1 To (12)

.
W equation (12), once the vslue of’ To is chosen, m can be

determined from the T(Y) curve of the material; Cl is a con-

stant and n is therefore a constant determined from the
~(~) curve of the material.. Substituting.equation(12) into equa-
tions (D) gives

In equations (13), all the terms are functions of a> T/Toj ~d

r/k except Kl, which is an arbitrsry loading constant, and n,

which is also a constant during the calculation. The values of a

—.—. .—z -———
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-d T/TO can be obtained slong

that satisfies the outer boundsxy

at the outer boundary is equal to

IWCA TN

r/k until a reaches the value

condition (a = ~). Because r

b, the constant k can be
determined. (For details,‘see refer&nce 5.) The variations of a
~~ Tlro with r/b for different vslues of n csn then ye cal-

culated. Compare the values of ~ md Y/Yo along r/b obtained

from eauations (13) for several vslues of n with the values of a
~d- T]l-o slong r/b obtained in reference 5. (The values of n

for these last cases are calculated from equation (12) with the
appro~te value Cl = O.5.) The variations of a ~d T/To

with r/b having the “ssme n values obtained from equations-(13)
and from reference 5 are quite dose; therefore

c1
= 0.5 can be

used and equation (12) becomes

n=m - 0.5 To (12a)

The relations @ a and T/T. with r/b for several values & n

are given in both tabular and curve form to facilitate solution of
this problem for any material under any maximum strain. This
method of determining the distributions of a ~d T/T. along r/b

till be referred to as the “partly linearized solution.”

2367

.

>

PRINCIPAL STREsw AND S’rRAINs

After the variations of a and y/y. with r/b are obtained

by the partly linearized solution, the principal stresses and
strains can be obtained from equations (7) and (8) together with
the actusl T and T relation of a given materiel. me eCpS.tiOllS
shov that Cr/y, ~e/Tj Urfi, and Ue/T are functions of a only;

they can be calculated for different values of a and given in
tabular form to facilitate solution of any given case. Equa-
tions (7) and (8) can be written as

‘r/T=$d-~( 3sinu-cosa)

e/T =x(&SiII . + cos a) ) (7a)

—... — - —.—
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VI
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.

.

~h = -& (sin CL-qz-cos CL)

}

(8a)

~61T= ~ (sin cL+@cos CL)
2*

The values of principal stresses and strains can then be obtained
by simple multiplication.

It is usually interesting to know the ratios of mmdnmm and
minimum tangential stress and strain, because the rotating speed
of the disk is mainly determined by the tangential stress and
strain along the radius. The maxhnumtangential stress and strain
occur at the center of the disk; at r = 0,

Ue = Ur

The minimum tangential stress and strain occur at the rti of the
disk; at r = b,

‘r = o

From equations (7), the ratio of maWmumto minimum tangential
stress is

From equations (8), the ratio of msxinwmto minimum tangential
strain is

.

-—— .—..— .. ..— —.— —— --—



14 NACA TN 2367

IDELGY PLAs-Mc

For the case of n = O,

AND APPROXIMATE SOLUTION

equations (13) become

()rii

(13a)

(13-I))

Equations (13a) and (13b) cem be integrated numerically; these equa-
tions are mch simpler thsn those for the cases of n # O. For
ideally plastic material with the infinitesimal strain concept,
To is infiniteshal and m = O; the constant n is then eqyal

to zero; this case is a speci&l one of n = O. For this case,
Nadai (reference1) obtained a similsr relation between u snd
r/b as equation (lSa).

Eqyations (15a) and (13b) csn also be used to determine
approximatelythe variations of ~ - T/Y. with r/b for a

material with n + O. An approximatemethod of solution is there-
fore proposed. The,procedure of the a~roximate solution is as
fOllows: Use the variations of a and T/T. with r/b for

n = O (or for ideally plastic material with infiniteshnal strain)
as the approximate solution of the variations of u end y/y.

with r/b. The principa3 stmdns E~ and ~ can be calculated

from the approximate relations of a, T/To, and r/b because the

strains are functions of a and y only. The stresses, which
are functions of a ~d T, can be calculated from equations (7a)
by US@ the tensile true T(y) ~e of the matefi~ ~d the
rel.attonsof “a,T/To, and r/b determined for n = O.

DETEEUWStNATLONOF ROTHITNG SPEED W DISK

The rotating-speed function p(@b)2 can be determined by con-
sidering a circular sector as shown in figure 1(c). The radial
component of force acting on the sector due to Ue is equal to

.

.M,

k

.

‘.,
.

—z—. ——. —

.
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P’
,nJ

b

-J

.

L@ d(r+u) ~2a@h SiIl ~

o h

The centrifugal force on the same sector is equal to

b

[
P~t r(~) mz (r+u) dr

o

From the condition of equilibrium of
tirection, the following equation is

@ fib

the sector in the radial
obtained:

or

(15)

The value of p(ub)2 is then determined onlyby the tangential
stress and strain. Accurate values of p(mb)2 canbe obtainedby
substituting into equation (15) the tangential stress and strain,
(Je and ~e, calculated from the linearized solution.

APPROXIMATE VALUE OF RO!IATINGSPEED OF DISKD~

DIRECTLY FROM TENSILE STRESS-S!I!RAINCURVEOF MATERUL

If otiJ the approximate value of the rotating-speedfunc-

tion p(@b)2 is required, equation (15) can be made even shpler.
Consider first the denominate because it is a function of ~

Ze
and r/b only. Expanding e into a series, the denominator
becomes

. .

-——..— . —-——___ .__. ——— ._ ____



16 NACA TN 2367

where y. is a constant and can be taken out
Thus the denominator of equation (15) becomes

of the integral sign.

where ~, G2, and so forth sre integrals, which are functions of a, ~

Y/To, and r/b only. The integrals ere given in table 1.

The integrals can %e calculated using the vslues of a and
T/T. along r/b obtained from the approxhate solution. The var-

iations of a and T/To with r/b are independent of material

according to the approximate solution.

The numerator of equation (15) is a function of ae, Ce, snd

r/b. The tangential strain c~ can be treated in a manner similar

to that used for the denominator. The tangential stress CJe can

be written as (cre/T)T, where ~e/T is a function of u, and T

csn be written as an approximatee function of T; thus

m
N

d

‘e ‘(%’)T=($) ~Tm”-
where m is the slope of a straight line approximatingthe tensile
T(T) curve of the material on the logarithmic plot within the
rsmge of T encountered along the radius of the disk Tb to To,

=d K is a constent that csn be determined from the actual
T(y) curve within the same range of T. The integrand of the
numerator thus becomes:

. . .. ...“,.... ..
,. ,“. ...”; ‘,

,, . . . . .
.. . . ... . ,,. .. .... . . . . . . . . .

— . . . . . . . .. . .— ———— ~



3’ NACA TN 2367

Expanding the exponential function of e into a series gives

e

17

r.
. I-(111 10ge ~+ce) ++- (m lo% ~+ce) 2-*(mloge~+c~)3+ . . .

l-. Y02 -
=1- ‘2 (loge ~)mloge~+~ .

~e T Ce T ro
— To + Wo —-loge—-

-7T0 T Y. r

Yo2 Ce 2

()()

2

+ T-——
2! r T

(we :)3 +.. .

+.. .

The values of m and To remain constmt along the radius and can

therefore be taken out of the integral si~; thus the numerator of
equation (15) becomes

LrUee‘e%)=To(10 - Ilm + 1~2 -13m3 +...
o

- 14% + 15mro + . . -) (Mb)

The inte~als 10> Ilj 12~ 13~ 14~ 1s, and so forth are functions

of aj T/ToY ad r/b, and are independent of material according

to the approximate solution. These integrals are also given in
table 1. Substituting equations (16a) and (16b) into equation (15)
and neglecting the

p(~b)2 _

o

small terms result in

10 - Ilm + 1~2 - 13m3 - 14T0 + 15w0
(17)

1
~ + ~To + G2T02

-——— — ——— —— —.
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The values of l., 11, . . . Gl, and G2 are calculated from the

formulas listed in table I by using the a, y/To, and r/b rela-

tions
These

obtained in the case of n = O (the approximate solution).
values are as follows:

10 2 ● 3031 14 0.5239

11 2.0281 15 .3514

12 1.33.31
‘1 .0537

I .6362 G .0047

Equation (17) shows that p(@b)2/To is a function of m and To.

The value of To is the nwdmum value of T in the disk. Once

the value of To is selected, m can he obtained from the tensile

T(T) curve of the material.within the range of y considered

(Tb ‘0 To> y~~o is approximately equal to 0.15), and To is

the value of T correspondingto To taken from the T(T) curve

of the materia3.. Equation (17) thus gives the approximate value

of p(mb)2, which is directly determined from the tensile stress-
strain curve of the material. Curves of p(ab)2fio against To

for different constant values of m can be calculated and plotted.
The value of p(mb)2/To can then be read directly from the chart

for giVeIlvalues of m and To.

CORRELATION BETWEEN IW?ERIMENTALBURSTING SPEKD AND

CAWUUTED VALUE D~ DIRECTLY FROM

TENSILE STRESS-STRAINCURVE OF MATERI&

It is interesting to compere the experimentallydetermined
rotating speed correspondhg to a value of Y. at the center of

the disk with the rotating speed predicted from the chart (or equa-
tion (17)) mentioned in the previous section. In order to deter-
mine these speeds experimentsll.y,it would be necessary to measure
To at the centers of the rotating disks during operation. Such

data sre unavailable in the literature to the best knowledge of
the author. If it is assumed that fracture in the rotating disk
tskes place at the same value of y. as the fracture octahedral

shear strain in simple tension, then the data in reference 4,

.)

.

.

—— -—. .



NACA!I!N2367 19

together with additional data obtained at the Lewis laboratory for
the work reported in reference 4, are sufficient to allow comparison
between prediction and experiment.

The predicted rotating speed is determined directly from the
tensile octahedral shear stress-straincurve of the same material
as the disk. These curves are calculated from the unpublished
tensile test data for reference 4. The tensile specimens were cut
in the radial direction of the disk of the same material and same
heat treatment. The specimen was 3.00 inches long with a l.00-inch
gage length. Detailed dimensions of the tensile specimen sre
given in figure 4 of reference 4. During the tensile test, the
load-elongationcurve was obtained by a recording extensiometer.
The original and breaking dismeters of specimens were measured
before and tier the experiment. The load at which the specimen
broke was read from the dial of the tensile machine. From these
data, a T(y) curve of the material can be obtained. First, csl-
culate T and r by using the values taken from the load-
elongation curve up to the-mmd.mum load point:

T= 2 loge (1+A2)

‘@P .@d R. -@Z (1+A2).= A!?.l =-_= (m)
3 3A 3AOA ~Ao

where

Al elongation of l-inch gage length

A instantaneousarea

~ original area

1 instantaneous length

20 original length

P load of tensile specimen

The T and T relation cannot be obtained from the tensile
load-elongationcurve after the madmum load is reached because
of the nonuniform elongation within the gage length. However, the
T and T at fracture can be calculated frcm the original.cross-
sectional area, fracture area, smd fracture load:

——— — —— —. .
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4 ‘fr
‘fr=— —

3 %

r
h

‘fr
= 210ger

fr

(18a)

where the subscript fr means at fracture. Plot the T and Y
relation obtdried on a logarithmic scale. Draw a strsi t lLne
to appro~te the JT(T) curve in the range of Tfr(T To) to Tfr;

for a solid rotating disk, T@. is approximately equal to 0.15

(for the case of n = O). The slope of this straight line gives

the value of m. Find the value of p(mb)2/To correspondingto m

~d TO= Tfr from the chart. The predicted value of p(mb)2 when

the disk bursts will.be equal to [P(~b)2/T~Tfy byassx the
disk bresks when the maximum y in the disk (To at the center

of the disk) reaches the value of Tf~ in simple tension.

CALCWATIONS, RESULTS, AND DISCUSSION

In order to observe the degree of the approximation resulting
from the use of a power function representing the octahedral shear
stress-strainrelation over the complete strain-hardeningrange
(power-law ~proximation), a calculation is made with the follow-
@ relation betwe~ T and T:

T (r) = 126,CO0 T0”25

The-constants are chosen to appro-te the T(T) curve of
Inconel X over the whole strain-hardeningrange, as shown in fig-
ure 2. In figure 5, the variations of a, y, Ur, Ue, Cr, and Ce

with r/b for the case of To = 0.30 obtained by the power-law

approximation sre compared with the values obtained from the actual
T(T) curve of Inconel Xj it can be seen that the power-law

appro~tion gives good results. These results indicate that
y d~

replacing the term ~ ~ in equations (9b) by m should introduce

very little error. Also, if a simple analytical function of -r(y)
is desired for smalysis, the simple power function representing
the T and y relation of a .#ven material will give a very good
approximation.

—
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The values of a and y/To along the radius are calculated

for n = --0.05, 0, 0.1, 0.2, and 0.3 from the partly linearized
equations (13). The variations of a and y/y. with r/b for

the different values of n sre plotted in figure 4; these values
are given in table II. The values of a end y/To along r/b

obtained in reference 5 for 16-25-6 and Inconel X are plotted
in figure 5; the values of n for these cases are cshulated from
equation (12a) and indicated on these curves. The curves obtained
from the partly linearized solution in figure 4 hating the same
r~=e of vslues of n as those obtained from reference 5 are also
plotted in figure 5 for comparison. The curves for the same
n value of the two solutions agree very well.for mxt cases. For
simplicity, the solution based on the deformation theory obtained
in reference 5 is designated the exact solution. The simple rela-
tion n=m- 0.5 To can then be used as a good approximate cri-

terionto find the variation of a and T/T. with r/b for dif-

ferent materials and different ~ strains. This generality
leads to a general criterion of applicabilityof the deformation
theory of plasticity to this problem for any material in the strain-
hardening rsmge. The criterion is that if the value of n for a
given material is constsnt or approximately constant in the strain-
hardening range, the deformation theory can be applied to this
problem for the materiel. For the special case of infinitesimal
strain, the condition of n being constant reduces to m being
constant, which is the same contition obtained by Ilyushin
(referenceH).

In figure 4(a), the ~ variation of a is a%out Z5 per-.
cent whereas n varies from -0.05 to 0.3. For most materials, m
increases with”r; thus it canbe seen from eoyation (12a) that
m and T affect n in an opposite sense, so that n does not
change mch with strain. The value of n for most materials of
any maximum strain y. varies from -0.05 to 0.3 (references12

to 14); only a small part of this variation is due to the varia-
tion with strain for a given material. The variation of a during
loading is expected to be very small for most materials; conse-
quently the deformation theory of plasticity is applicable to this
problem within engineering accuracy.

The values of CSr/T,ae~, Cr/T, and Cc/T are cskulated

from equations (7a) and (8a) for the range of a considered and
are given in table III. The distributionsof principal stresses
and strains are obtsined by the partly linearized solution for the

- —- —-—
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cases of To = 0.3000 for ~conel X end y. = 0.4400 for 16-25-6.

These results are plotted in figure 6. The results obtained by
the exact solution are also plotted for comparison. The exsmples
with To = 0.3000 for Inconel X and To = 0.4400 for 16-25-6, with

the values of n equsll.to 0.15 and -0.05, respectively, are
chosen hecsuse they give the largest deviation of the examples con-
sidered between the psrtly linearized and exact solutions in curves
of u sxldy/To against r/b. For y. = 0.3000, Inconel X,

n is equal to 0.15 and the values of a and y/To corresponding

to different values of r/b canbe obtained from table I by lin-
ear interpolation. In figure 6, the principal stress and strain
distributionsobtainedby the psrtly Enearized solution are shown
to agree very well with those obtained by the exact solution, even
for these two cases that have the lsrgest deviation of the varia-
tions of a and T/To with r/b between the two solutions. For

the rest of the cases, the a and Y/T. curves obtained by the

two solutions are approximatelythe s~ej therefore the distribu-
tions of principal stresses and strs3ns will slso be practically
the same.

The variations of a and y/To with r/b obtained by the

approximate solution are the same as those for the case of n = O
in figure 4. The prticipal strains obtainedby the approximate
solution and the exact solution are plotted in figures 7(a) end
7(b) for 16-25-6 and Inconel X, respectively. The stress distri-
butions obtained by these two solutions sre plotted in figures 7(c)
-md 7(d) for 16-25-6 and Inconel X, respectively. The stresses
and the strains obtained %y the approximate solution give fairly
good results.

radius for ideally plastic material sre the same as those obtained
by the approximatemethod. The principal stresses for the ideally
plastic material with To equal to 0.4400 and 0.3000 sre elso cal-

culated. In this case, T is constant and is chosen equal to the
To for which the solutions are being compared. These distribu-

tions of principal stresses along the radius as well as those
obtained by the partly linearized, exact, and approdmate solutions
are plotted in figures 8(a) and 8(b) for the caae of TO = 0.4400

for 16-25-6, and To = 0.3000 for Inconel X, respectively, for com-

parison. It is seen from these figures that the stresses (espec-
ially the tangential stress, which is the most importsnt part of
the solution) obtainedby the ideally plastic material.are not good

“
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enough to represent the
the three other methods
cate, as in the case of

23

actual results. The curves obtained by
agree wry well. These results also indi-
the thin plate with a circular hole (ref-

erence 6) that the ratios of strains along the radius to the ti-
mum value and the ratio of the principal stresses are essentially
independent of the T(T) curve of the material and the maximum
strain of the disk, but that the stresses are very much dependent
on the material. The conclusions obtsined in reference 5 for the
problem of the rotating disk (withbody force) of Inconel X and
16-25-6 are then extended to most materials.

The rotating-speedfunction p(mb)2 is calculated from equa-
tion (15) by using the values of Ue and Ce obtained in the

partly linearized solution for Inconel X and 16-25-6. These values

of p(mb)2 and those obtained from the exact solution =e plotted
against y. in figure 9. The loads obtained by these two methods

are practically the same (the two curves coincide). The relations
hetween the approximate value of p(w%)2/To and To for severel

values of m are calculated from equa ion (17) and plotted in fig-
The variations of load p(ob)4ure 10. with To for Inconel X

and 16-25-6 are obtained from figure 10 and are plotted in fig-
ure 9 for comparison. The values obtainedby the approximate sol-
ution are also very close to the velues obtained by the exact
solution. The percentage deviation of p(ab)2 of the approximate
solution from the exact solution is nmch less than the percentage
deviation of tangential stress and strain. This canbe explained

by the fact that p(mb)2 (equation (15)) increases with increas-
ing value of Ue but decreases with increasing value of cej
values of Ce and Ce obtained by the approximate solution

(fig. 7) cliffer from those of the exact solution h the same
direction; hence the part of error cancels. The percentage devia-
tions of radial stress and strain in some cases are quite large,
but forwtel..y these quantities do not enter in the calculation

of p(ab) .

Use is made of figure 10 to calculate p(mb)2 from the tensile
stress-strain curve of the same materials as the solid disks con-
sidered in reference 4. (In this reference, data were obtained
for disks that showed no imperfectionsupon X-ray and surface
inspection and for disks in which defects did exist. For the
present purposes, only the disks having no defects were considered.)
From the load-elongation curve, original fismeter, final dismeter,

,= and fracture load in tension, which data were obtained at this lab-
oratory for the work reported in reference 4, the T(Y) curves of

,-
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these materia3s were calculated usimg equations (18) and (18a) ~d
are plotted in figure 11 on a logarithmic scale. Six materials
(SAE 1078 steel of two different heat treatments, beryllium-copper
alloy of three different heat treatments, and one nickel-base
alloy) sre considered. For simplicity, these materials are herein
designated materials A, B, C, D, E, and F. The values of Tfi

and Yti for these materials are given in table IV; the reduction

in nonnecked diameter> which was used as a parameter in some fig-
ures of ref~ence 4, is also given in table IV in order to corre-

-late the results @.ven in reference 4 and herein. (This reduction
in nonnecked dismeter is the reduction in dismeter in the region
of uniform strain of the specimen.) In table IV are 13.stedthe

values of m and p(cob)2, which sre calculated by tsking y. at

the center of the disk equal to yfi of the tens”iletest, except

for material C. Because the load-elongation curves of the tensile
test show that material C has a large necking effect, several val-

ues of p(ab)z for different To between y = 0.1342 (the y

at the maximum load of the tensile test) and Yfi were calculated

end are given in table V. It can be seen that the calculated
rotating-speedfunction p(rob)2 increases to a msxhnnm at

Yo = O.3 to O.4 and then decreases. This fact indicates a case

of instabilityy of the rotating disk.

The experimentallydetermined values of p(@b)2 are also
given in table IV. The percentage difference of calculated p(ub)2
to the experimentally determined p(mb)2 as well as the percentage
difference of calculated o to the expertment~y determined o
is given in the same table. Zt can be seen from these values that
the percentage cliffermce iII a is _. ~re re~able C~m-

lated values of p(cr)b)2 may be obtained, however, if: (1) the
T(T) curves obtsined from the tensile test sre corrected for the
triaxiality and nonuniform stress distribution introduced by neck-
-, =d (2) the T(Y) curve of a few tangential tensile specimens
taken at different radii of the disk (including a specimen passing
through the center of the disk) are used, because the materiel of

the disk is not quite uniform end p(mb)z is a function of Ce,

uo, end r/b, as shown in equation (15). The calculated vslues of

p(mb)z at &Wk failure are plotted against the experimentally deter-
mined p(cob)2 in figure 12. It can be seen that these points are
slightly above the 450 strsight line. Calculations based on
T(T) curves of tangential tensile specimens may give lower values.

.

.
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It should be
are only true for

emphasized that all the results and discussion
this problem under plastic deformation in the

strain-hardeningrange in which the elastic strains are small com-
pared with the plastic strains =d there are neither time and tem-
perature effects nor unloading.

....
‘CONCLUSIONS

The results obtained for the rotating disk in the strain-
hardening range, in which the elastic strains are small compared
with the plastic strains, lead to the following conclusions, which
are similar to those o%tained in the case of the thin plate with a
circular hole:

1. The results obtained by the partly linesxized solution
agree very well with those obtained by the exact solution based on
the defamation theory of plasticity. The smount of computation
is greatly reduced by the psrtial linearization. The stresses and
the strains canbe obtained for any material under any maximum
strain by a s@ple multiplicationusing the tables or curves given
in this paper.

2. The variation of a parsmeter, which is determined from the
tensile-stress-and-straincurve of the materisl, can be used as a
simple general criterion of the applicabilityof deformation the-
ory for this problem.

3. The,results previously obtained for Inconel X and 16-25-6,
nsmely, the variation of the ratio of the principal stresses with
radius and the ratios of the strain along the radius to their msxi-
mum value are essentisdly independent of the octahedral shear
stress-strainrelation of the material but that the distributions
of the stresses depend very much on the material, sre extended
“tonmst materials.

4.aResults obtained for the ideally plastic materiel with the
infinitesimal strain concept give good approAmate values of prin-
cipal strains but not principal stresses.

5. Sufficiently accurate vslues of principal stresses can be
obtained’by an approximate method in which the stresses sre cal-
culated by using the strains obtained from the ideally plastic
material ‘togetherwith the actusl octahedral shear stress-strain
relation of the material.

. .. —. —-
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6. T& rotating speeds of the disk obtained by the psrtly lin-
earized solution are practically the same as those obtained by the
exact solution; snd those obttied by the approSmate solution, in
which the rotating speeds sre determined directly from the tensile
stress-strain curve of the material, are also very close to the
exact value.

7. Good correlationbetween experimentalbursting speed and
the calculated value determined directly from the tensile stress-
strain curve of the material is obtained.

8. If a simple analytical function representing the octahedral
shear stress-strainrelation is required for anslysis, the power-
law appro-tion csnbe used.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,

Cleveland, Ohio, Janusry 23, 1951.
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~ I - VALUES OF I AND G USED IN EQUATIONS (16) ~ (17)

J()()
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‘e
b= o T g ‘2”3031

12=*J(%)$%g.&)=l.3131
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TAMLE II- VARIATION OF a AND T/To WITE r/b

FOR VARIOUS VALUES OF n

29

a n=- 0.05 n= 0 n= 0.1. n= 0.2 n= 0.3

r/b ‘T/Y. r/b T/T. r~b TITO r/b T/r. r/b Y/T.

1.5708 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
1.5675 .0480 .9850 .0510 .9850 .0600 .9850 .0690 .9850 .0800 .9850
1.5615 .0750 .9675 .0900 .9675 .1010 .9675 .SL40 .9675 .1260 .9675
1.5480 .11.70 .9250 .1325 .9250 .1565 .9250 .1780 .9250 .2050 .9250
1.5300 .1555 .8700 .1780 .8710 .2050 .8730 .2350 .8750 .2720 .8770
1.5045 .2025 .8010 .2250 .8030 .2580 .8060 .2970 .8090 .3330 .8120
1.4820 .2370 .7490 .2600 .7500 .2970 .75,50 .3400 .7590 .3840 .7630
1.4490 .2820 .6780 .3050 .6820 .3475 .6880 .3930 .6920 .4400 .6960
1.4105 .3280 .6100 .3510 .6150 .3975 .6210 .4420 .6280 .4910 .6350
1.3670 .3775 .5420 .4000 .5490 .4460 .5580 .4920 .5675 .5410 .5760
1.3180 .4280 .4790 .4505 .4875 .4950 .4995 .5400 .5120 .5900 .5210
1.2635 .4820 .4200 .5025 .4295 .5450 .4450 .5890 .4575 .6370 .4710
1.2045 .5350 .3690 .5540 .3790 .5940 .3950 .6360 .4120 .6800 .4250
1.l~oo .5880 .3230 .6060 .3345 .6440 .3520 .6830 .3695 .7230 .3850

1.0705 .6440 .2840 .6600 .2950 .6930 .3145 .7290 .3325 .7650 .3500
.9965 .7000 .2505 .7150 .2610 .7440 .2820 .7730 .3000 .8050 .3175
● 9175 .7575 .2220 .7700 .2330 .7930 .2525 .8170 .2720 .8440 .2915
.8330 .8140 .1975 .8240 .2075 .8420 .2280 .8610 .2480 .8820 .2690
.7430 .8710 .1760 .8780 .1870 .8920 .2070 .9040 .2270 .9180 .2490
.6465 .9290 .1590 .9330 .1690 .“9410 .1900 .9490 .2100 .9560 .2310
.5236 1.0000 .1430 1.0000 ..15201.0000 .17201.0000 .19301.0000 .2150

—.. . ..—--- —.—.—. _ _ __ -— —.—
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T!&8LEIII- VALUE8 OF arfi, @, er/Y> ~ ~e/T

FOR CORRESPO19DINGVALUE OF a

a

1.5708
1.5675
1.5615
1.5480
1.5300
1.5045
1.4820
1.4490
1.4105

1.3670
1.3180
1.2635
1.2045
1.1400
1.0705
.9965
.9175
.8330
.7430
.6465
.5236

2.1213
2.KL72
2.1098
2.0929
2.0696
2.0355
2.0044
1.9568
1.8986
1.8295
1.7476
1.6515
1.5419

1.4160
1.2738
1.1.157
.9401
.7458
.5331
.3003
.0000

2.1213
2.1253
2.1326
2.1487
2.1695
2.1978
2.2216
2.2544
2.2896
2.3253
2.3602
2.3924
2.4192
2.4389
2.4488
2.4463
2.4289
2.3935
2.3370
2.2555
2.1213

0.3536
..3515
.3478
.3395
.3283
.3122
;2979
.2765
.2513
.2223
.1892
.1518
.1108
.0655
.0165

-.0358
-.0915
-.1503
-.2XL8
-.2758
-.3536

0.3536
.3556
.3592
.3674
.3782
.3933
.4065
.4253
.4468
.4702
.4955
.5222
.5494
.5770
.6040
.6295
.6530
.6735
.6902
.7018
.7071

w
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5.19
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2.81

3.19

2.56
3.92

A 2.0

B 2.5

6.61
5.77

5.75
5.47

4.15

2.72
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. . 9
TAELE V - REIATION BETWEENROTA!IZNG SPEEO P(mb)”

m IwaMrJM OCT.AHEORALSHEAR Sfr!RAmAT CE%CER

OF DISK FOR MTERIAL c (BERYILIUM-COPPER)

0.1342
.2000
.5000
.4000
.5000
.8224

To m P(~b)2/To Calculated

from fig. 10 p(mb)2

54,560 .0.092 6.04 330 x 103
58,000 .1.12 5.80 336
62,800 .152 5.38 337
66,2~ .162 5.10 337
69,800 .185 4.81 336
78,120 .192 4.15 324

v
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(a) Rotating dim.

/
r+u

/

(b) Element.

\
(c) Sector.

Figure 1. - Rotating disk, an element, and a sector in deformed state.
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Figure 2. - Octahedralshear stress-straincurves.
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